Asymptotic Properties of an Estimator of the Drift Coefficients of Multidimensional Ornstein-Uhlenbeck Processes that are not Necessarily Stable

نویسندگان

  • Gopal K. Basak
  • Philip Lee
چکیده

In this paper, we investigate the consistency and asymptotic efficiency of an estimator of the drift matrix, F , of Ornstein-Uhlenbeck processes that are not necessarily stable. We consider all the cases. (1) The eigenvalues of F are in the right half space (i.e., eigenvalues with positive real parts). In this case the process grows exponentially fast. (2) The eigenvalues of F are on the left half space (i.e., the eigenvalues with negative or zero real parts). The process where all eigenvalues of F have negative real parts is called a stable process and has a unique invariant (i.e., stationary) distribution. In this case the process does not grow. When the eigenvalues of F have zero real parts (i.e., the case of zero eigenvalues and purely imaginary eigenvalues) the process grows polynomially fast. Considering (1) and (2) separately, we first show that an estimator, F̂ , of F is consistent. We then combine them to present results for the general Ornstein-Uhlenbeck processes. We adopt similar procedure to show the asymptotic efficiency of the estimator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum L1-norm Estimation for Fractional Ornstein-Uhlenbeck Type Process

We investigate the asymptotic properties of the minimum L1-norm estimator of the drift parameter for fractional Ornstein-Uhlenbeck type process satisfying a linear stochastic differential equation driven by a fractional Brownian motion.

متن کامل

Sequential Estimation for Fractional Ornstein-Uhlenbeck Type Process

We investigate the asymptotic properties of the sequential maximum likelihhod estimator of the drift parameter for fractional Ornstein-Uhlenbeck type process satisfying a linear stochastic differential equation driven by fractional Brownian motion.

متن کامل

Sharp large deviations for the non-stationary Ornstein-Uhlenbeck process

For the Ornstein-Uhlenbeck process, the asymptotic behavior of the maximum likelihood estimator of the drift parameter is totally different in the stable, unstable, and explosive cases. Notwithstanding of this trichotomy, we investigate sharp large deviation principles for this estimator in the three situations. In the explosive case, we exhibit a very unusual rate function with a shaped flat v...

متن کامل

Efficient maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck processes

We consider the problem of efficient estimation of the drift parameter of an Ornstein-Uhlenbeck type process driven by a Lévy process when high-frequency observations are given. The estimator is constructed from the time-continuous likelihood function that leads to an explicit maximum likelihood estimator and requires knowledge of the continuous martingale part. We use a thresholding technique ...

متن کامل

A least squares estimator for discretely observed Ornstein–Uhlenbeck processes driven by symmetric α-stable motions

We study the problem of parameter estimation for Ornstein–Uhlenbeck processes driven by symmetric α-stable motions, based on discrete observations. A least squares estimator is obtained by minimizing a contrast function based on the integral form of the process. Let h be the length of time interval between two consecutive observations. For both the case of fixed h and that of h → 0, consistenci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008